Title: Nanorobot communication techniques: a comprehensive tutorial

Authors: Cavelzani, A. T., Hoop, T., Shirzadeh, B., Law, H.C.


Source: 2006 9th International Conference on Control, Automation, Robotics and Vision (IEEE Cat. No.06EX1301)

Publication date: 2006
Pages: 6 pp.
Language: English

Document type: Conference article (CA)
Conference name: 2006 9th International Conference on Control, Automation, Robotics and Vision
Conference date: 5-8 Dec. 2006
Conference location: Singapore
Publisher: IEEE

Place of publication: Piscataway, NJ, USA
Material Identity Number: X2007-00586

Abstract: This work presents chemical communication techniques for nanorobots foraging in fluid environments relevant for medical applications. Unlike larger robots, viscous forces and rapid diffusion dominate their behaviors. Examples range from modified microorganisms to nanorobots using ongoing developments in molecular computation, sensors, and motors. The nanorobots use an innovative methodology to achieve decentralized control for a distributed collective action in the control of cancer. A communication approach is described in the context of recognizing a single tumor cell in a small volume as a target for medical treatment. Thus, a higher gradient of signal intensity of E-cadherin is used as a chemical parameter identification in guiding nanorobots to identify malignant tissues. A nanorobot can effectively use chemical communication to improve intervention time to identify tumor cells.

Number of references: 29

Inspec controlled terms: cancer, - chemical variables measurement, - decentralized control, - medical robotics, - nanomachines

Uncontrolled terms: nanorobot communication, - chemical communication, - fluid environment, - medical application, - molecular computation, - decentralized control, - distributed collective action, - cancer, - medical treatment, - signal intensity, - E-cadherin, - biomedical engineering, - endothelial cell, - nanomedicine

Inspec classification codes: A6705 Nanotechnology applications in biomedicine, A67705 Patient care and treatment, C3335 Biological and medical control systems, C3360 Robotics, C3396 Multivariable control systems

Treatment: Practical (PRA)
Discipline: Physics (A); Computers/Control engineering (C)
Database: Inspec

Copyright 2007, The Institution of Engineering and Technology